> 技术 > AI/人工智能

微软发布 Phi-4-mini-flash-reasoning 端侧 AI 模型:10 倍吞吐量,推理能力升级

人阅读 2025-07-11 11:57:49
感谢网友 华南吴彦祖 的线索投递!

7 月 11 日消息,科技媒体 NeoWin 昨日(7 月 10 日)发布博文,报道称微软推出 Phi-4-mini-flash-reasoning 小语言模型,重点提升端侧 AI 模型的数学和逻辑推理能力。

Phi-4-mini-flash-reasoning 的主要优势在于,它能够在边缘设备、移动应用和嵌入式系统等资源不足的场景下,引入先进的推理功能。

在架构方面,Phi-4-mini-flash-reasoning 创新引入了 SambaY 架构,而该架构的一大亮点,就是名为 Gated Memory Unit(GMU)的组件,它能够高效地在模型的内部之间共享信息,从而提高模型的效率。

这些改进让模型能够更快地生成答案和完成任务,即使面对非常长的输入也能应对自如,Phi 模型还能处理大量数据,理解非常长的文本或对话。

在性能方面,相比较其它 Phi 模型,Phi-4-mini-flash-reasoning 的吞吐量最高提升 10 倍,这意味着在给定的时间内,Phi-4-mini-flash-reasoning 可以完成更多的工作。

它可以在相同的时间内处理 10 倍多的请求或生成 10 倍多的文本,这对于实际应用来说是一个巨大的改进,此外,延迟也降低至其它 Phi 模型的 1/2~1/3。附上相关性能数据如下:

Phi-4-mini-flash-reasoning 新型模型已在 Azure AI Foundry、NVIDIA API Catalog 和 Hugging Face 上线。

广告声明:文内含有的对外跳转链接(包括不限于超链接、二维码、口令等形式),用于传递更多信息,节省甄选时间,结果仅供参考,所有文章均包含本声明。

LOT物联网

iot产品 iot技术 iot应用 iot工程

Powered By LOT物联网  闽ICP备2024036174号-1

联系邮箱:support1012@126.com